已知a、b是整数,且满足a-b是质数,ab是完全平方数,若a≥2011,求a的最小值
问答/471℃/2025-05-13 11:02:10
优质解答:
a-b=p(质数),由辗转相除法的原理可得出结论:要么p是a,b的公约数,要么a,b互质.
如果p是a,b的公约数:令b=np,则a=b+p=(n+1)p,ab=n(n+1)p^2,n(n+1)不可能是完全平方数
如果a,b互质:由ab是完全平方数,可知,a和b都是完全平方数,令a是m的平方,b是n的平方,则a-b=m^2-n^2=(m+n)(m-n),a-b是质数,所以m-n=1,m+n=p,sqrt(2011)>44,而45+44=89是一个素数,所以,a最小是45^2=2025,b只能是44^2=1936